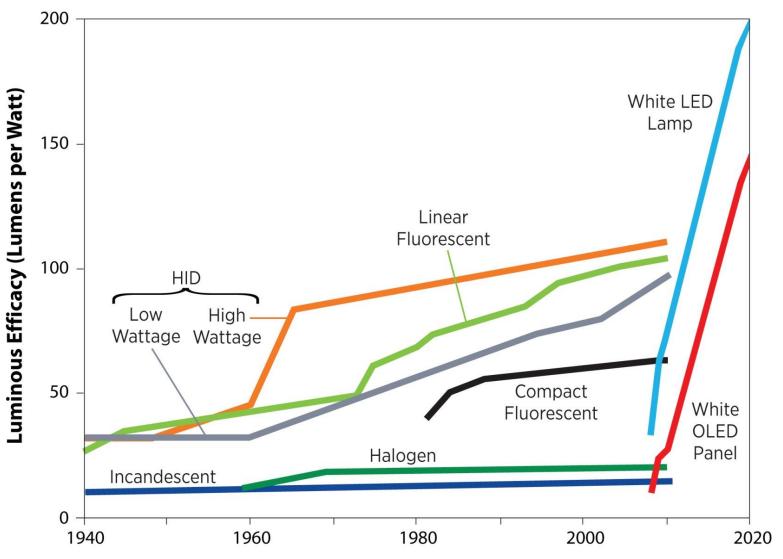

Solid-State Lighting for Exterior Applications


2011 Asia Pacific Clean Energy Summit and Expo

September 13, 2011

Jeff McCullough, LC

Pacific Northwest National Laboratory Richland, Washington

Energy Savings Potential of Solid-State Lighting

SSL Multi-Year Program Plan, May 2011: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2011_web.pdf

A Market in Motion

- Tsunami of new products coming to market
- Significant learning curve for both manufacturers and buyers
- SSL is fundamentally different from conventional technologies
- Unfamiliarity and lack of field data mean increased risk
- Lots of hype and misinformation

Market Trends Identified Through DOE Programs

- CALiPER: Independent lab testing of commercially available LED and benchmark products
 - Over 350 products tested; reports available
- GATEWAY: Demonstrations of LED products in real applications
 - Lessons learned; reports available

LOOKING GOOD	NOT COMPETITIVE YET
Recessed downlights	4' linear replacement lamps
 Outdoor, parking garage, wall pack luminaires 	Small replacement lampsCove lighting (when replacing
 Refrigerator case lighting 	linear fluorescents)
• 2' x 2' troffer luminaires	

CALiPER data, www.ssl.energy.gov/caliper.html; GATEWAY data, www.ssl.energy.gov/gatewaydemos.html

GATEWAY Demonstrations Showcase SSL Products in Real Applications

- Projects implemented must save energy, be cost effective, meet expectations for quantity and quality of illuminance
- Purpose:
 - Comparison of LED with incumbent technologies
 - Comparison of rated values with measurements
 - Feedback for manufacturers
 - Objective information for utilities, municipalities, large purchasers
 - Tracking of year-to-year technology progression
 - Long-term performance monitoring

New York, NY

Chicago, IL

LED Parking Lot Lighting Leavenworth

- System designed using DOE site lighting performance specification
- 63% energy savings relative to metal-halide baseline
- 6- to 10-year simple payback period
 - \$0.06 / kWh for electricity

LED					
Avg. Horizontal	1.3 fc				
Min. Horizontal	0.8 fc				
Max:Min	2:1				
W/sf	0.04				

LED Parking Lot Lighting Manchester

- LED improved both uniformity and minimum illuminance
- Incorporates motion sensors and dimming control
 - 53% energy savings without dimming
 - 74% estimated with dimming
- 3 year simple payback period (retrofit)
 - 0.14/kWh for electricity and high maintenance \$\$
- Ongoing monitoring: luminaires and motion sensors

Photo credit: CBT Development

Criterion	400W HPS	LED (full output)
Avg. Horizontal	3.8 fc	2.0 fc
Min. Horizontal	0.6 fc	1.0 fc
Max:Min	28:1	3:1
Input	496 W	235 W

LED Roadway Lighting Palo Alto

- Compared HPS, LED, and induction light sources
- Also evaluated remote monitoring/dimming

Street	Source	Input	Average	Avg:Min	CV	Retrofit NPV
Colorado at Bayshore	HPS	96W	0.44 fc	15:1	1.22	
	LED-20	42W	0.24 fc	12:1	1.08	\$122
	Difference	-56%	-45%			
Colorado at Louis	HPS	96W	0.36 fc	18:1	1.05	
	LED-30	54W	0.43 fc	43:1	1.04	-\$15
	Difference	-44%	+19%			
Amarillo	HPS	96W	0.27 fc	27:1	0.90	
	Induction	90W	0.23 fc	23:1	1.23	-\$173
	Difference	-6%	-15%			

Parking Garage Washington, DC

- Minimum horizontal illuminance increased 21%
- Average horizontal illuminance decreased 53%
- 55% wattage reduction, 77–85% kWh energy savings
- 1:1 replacement, approx. 8-yr simple payback (retrofit)

Before (HPS)

After (LED & motion)

Completed GATEWAY Projects

 Reports available online: www.ssl.energy.gov/gatewaydemos_results.html

LED T8 Replacement Products: Seattle, WA (May 2011)

LED Parking Lot Lighting: Leavenworth, KS (May 2011)

LED Retrofit Lamps: San Francisco, CA (Nov. 2010)

LED Museum Accent Lighting: Chicago, IL (Nov. 2010)

LED Parking Lot Lighting: Manchester, NH (June 2010)

LED Roadway Lighting: Palo Alto, CA (June 2010)

LED Street Lighting: Portland, OR (Nov. 2009)

LED Freezer Case Lighting: Eugene, OR (Oct. 2009)

LED Roadway Bridge Lighting: Minneapolis, MN (Aug. 2009)

LED Parking Lot Lighting: West Sacramento, CA (Feb. 2009)

LED Street Lighting: San Francisco, CA (Dec. 2008)

LED Parking Garage Lighting: Portland, OR (Nov. 2008)

LED Residential Downlights and Undercabinet Lights: Eugene, OR (Oct. 2008)

LED Walkway Lighting: Atlantic City, NJ (March 2008)

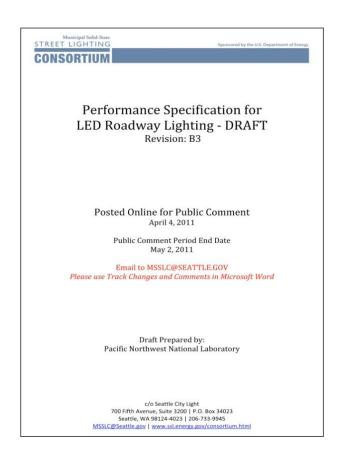
LED Street Lighting: Oakland, CA (Phase III, November 2008; Phase II, January 2008)

www.ssl.energy.gov/gatewaydemos.html

Municipal Solid-State Street Lighting Consortium

- Share experiences, best practices, lessons learned from LED street lighting demonstrations
- Regional workshops: Provide forum for education, collaboration on specifications and tools
- Demonstrations: Kansas City, MO; Sacramento, CA; Philadelphia, PA; Seattle, WA

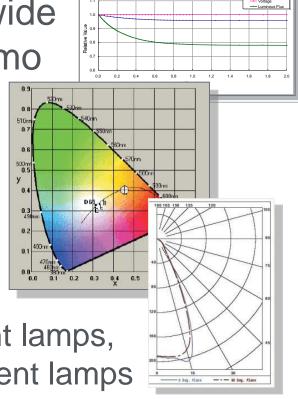
Photo credit: Ryan Pyle



 Resources: Draft Model Specification for LED Roadway Lighting; task group on Remote Monitoring & Adaptive Lighting Controls

Model Specification for LED Roadway Lighting

- For use by municipalities, utilities, ESCOs as template to be edited by each user
- Provides a common language, framework, and checklist
- Appendix A provides consolidated criteria for each luminaire type, evaluating at site/system or luminaire/material level
- Draft published for public comment; final version expected in September 2011


www.ssl.energy.gov/resources.html

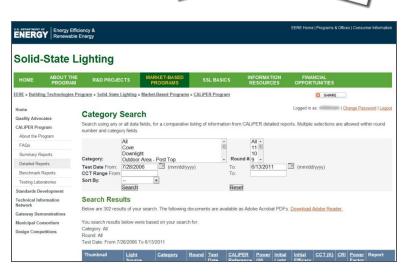
CALiPER Guides Planning and Fosters Developing Market

 Supports independent testing of wide array of SSL, benchmark, and demo products

- Informs development of standards and test procedures
- Rounds 1–12 completed
 - Includes roadway, linear replacement lamps, high-bay luminaires, small replacement lamps
- Reports available online

CALIPER Reports and Analysis

Summary of


Round 10 of

2010 Roundtable

 Summary reports provide detailed analysis of results for all products tested in each round

Detailed test reports provide results for each product tested; available through searchable, sortable database

- Benchmark reports compare LED products with conventional lighting technologies
- Exploratory studies provide nuanced analysis of test results related to critical issues (e.g., reliability, color shift)

www.ssl.energy.gov/caliper.html

Lighting Facts®

www.lightingfacts.org

DesignLights Consortium ™

ENERGY-EFFICIENT, COMMERCIAL LIGHTING DESIGN AND INFORMATION!

Search .

HOME | SOLID STATE LIGHTING | HPT8 | TRAINING | LINKS/RESOURCES | MEMBERS | SKYLIGHTING | CONTACT US

Technical Requirements Table v1.6

SOLID STATE LIGHTING

About

View/Download Category

Specifications Table

Manufacturer Application Overview

Manufacturer Application Process

DLC Member Log in

Participating Programs

Qualified Products List

FAQ

Contact Us

See a list of our category definitions here

Designlights™ Consortium Qualified Products List- Non-Residential Applications -Submit any or all of the following product Information and Testing Results to Designlights for qualification *please make note that it is ONE per submission*

PDF Download

Application	Minimum Light Output	Zonal Lumen Density ²	Minimum Luminaire Efficacy	Allowable CCTs (ANSI C78.377- 2008)	Minimum CRI	L70 Lumen Maintenance	Minimum Luminaire Warranty
1) Outdoor Pole/Arm- Mounted Area and Roadway Luminaires	1,000 lm	=100% 0-90°, <10% 80-90°	60 lm/W	<u><</u> 5700K	50	50,000 hrs	5 years
2) Outdoor Pole/Arm- Mounted Decorative Luminaires	1,000 lm	≥65%: 0-90°	40 lm/W	<u><</u> 5700K	50	50,000 hrs	5 years
3) Outdoor Wall- Mounted Area Luminaires	300 lm	=100% 0-90°, <10% 80-90°	60 lm/W	≤5700K	50	50,000 hrs	5 years
4) Bollards	500 lm	<15%: 90- 110° 0%: >110°	35 lm/W	<u><</u> 6500K	50	50,000 hrs	5 years
5) Wall-wash Luminaires	575 lm	≥50%: 20-40°	40 lm/W	2700K, 3000K, 3500K, 4000K, 4500K, 5000K	50	50,000 hrs	5 years
6) Parking Garage Luminaires	2,000 lm	≥30% 60-80°, ≤25% 70-80°	60 lm/W	<u><</u> 5700K	50	50,000 hrs	5 years
7) Fuel Pump Canopy	2,000 lm	≥40%: 0° to 40°; ≥40%: 40° to 70°	70 lm/W	<u><</u> 5700K	50	50,000 hrs	5 years

SSL Website Resources

- Current information on SSL program, progress, and events
- SSL publications
 - Roadmaps
 - Reports
 - Technical fact sheets
- Solicitations
- Register for ongoing SSL Updates

www.ssl.energy.gov

www.ssl.energy.gov/gatewaydemos.html www.ssl.energy.gov/consortium.html www.ssl.energy.gov/caliper.html

Contact/Questions

Jeff McCullough, LC Pacific Northwest National Laboratory jeff.mccullough@pnl.gov (509) 375-6317